

What’s New in V2 of the Architecture
Analysis & Design Language Standard?

Peter H. Feiler
Joseph R. Seibel
Lutz Wrage

March 2012

SPECIAL REPORT
CMU/SEI-2011-SR-011

Research, Technology, and System Solutions Program

http://www.sei.cmu.edu

SEI markings v3.2 / 30 August 2011

Copyright 2012 Carnegie Mellon University.

This material is based upon work funded and supported by the United States Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center.

This information product has been reviewed and approved for public release. The views expressed herein are those of the

author and do not reflect the official policy or position of the Department of the Army, Department of Defense, or the

U.S. Government. Reference herein to any specific commercial, private or public products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring

by the United States Government.

This report was prepared for the

Contracting Officer

ESC/CAA

20 Shilling Circle

Building 1305, 3rd Floor

Hanscom AFB, MA 01731-2125

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

CMU/SEI-2011-SR-011 | i

Table of Contents

Abstract v

1 Overview 1

2 Component Improvements 2
2.1 New Component Categories 2
2.2 Parameterized Component Classifiers 3
2.3 Classifier Substitution in Refinements 3
2.4 Component Arrays and Connection Patterns 3
2.5 Improvements to Subprograms 5
2.6 Improvements to Threads 5
2.7 Thread-Related Runtime Services 5
2.8 Asynchronous Systems 5
2.9 Layered Architecture Modeling 6

3 Feature and Connection Improvements 7
3.1 Abstract Features 7
3.2 No More Refines Type 7
3.3 Feature Groups 7
3.4 Inverse of Feature Groups 8
3.5 Port-Queue Revisions 8
3.6 Classifier Matching for Connections 8
3.7 Feature Arrays and Connection Patterns 8
3.8 Port Connections 8
3.9 Improved Communication Timing Specification 9
3.10 Port-Related Runtime Services 9
3.11 Bidirectional Connections 9

4 Mode-Related Improvements 10
4.1 Mode-Transition Improvements 10
4.2 Modes in Component Types 10
4.3 Requires Modes 10
4.4 System-Level Mode Transitions 11

5 Packages and Visibility of Classifiers 12
5.1 With and Renames 12
5.2 Visibility of Component Implementations 12

6 Property Improvements 14
6.1 Specifying Applicability of Properties 14
6.2 Revisions to Contained Property Associations 14
6.3 Property Type Improvements 14
6.4 Property Values 14
6.5 References to Properties 15
6.6 No More Access Keyword for Properties 15
6.7 Other Property Improvements 15

7 Other Improvements 16
7.1 No More Anonymous Namespace 16

CMU/SEI-2011-SR-011 | ii

7.2 Flows Through Shared Data Components 16
7.3 End-to-End Flows 16

8 AADL Standard Appendices and Annexes 17
8.1 Data Modeling Annex Standard 17
8.2 Behavior Annex Standard 17
8.3 ARINC653 Annex Standard 17
8.4 AADL Meta Model & XML Interchange Format Standard 17
8.5 Code Generation Annex Standard 17
8.6 Error Model Annex Standard 17
8.7 UML Profile for AADL via OMG MARTE 18
8.8 Future Annexes 18

9 Translation from AADL V1 to AADL V2 19
9.1 AADL Specifications and Anonymous Namespaces 19
9.2 Package Declarations and Properties 19
9.3 Package Declarations and With Clauses 19
9.4 Refines Type in Component Implementations 20
9.5 Naming Subprogram Call Sequences 20
9.6 Named Mode Transitions 20
9.7 Changes for Features 20
9.8 Changes for Connections 20
9.9 Property Sets and With Clauses 21
9.10 Property Definition Changes 21
9.11 Changes in Property Expressions 22
9.12 Renaming of Properties 22

10 Conclusion 23

References 24

CMU/SEI-2011-SR-011 | iii

List of Figures

Figure 1: Connection Patterns for One-Dimensional Arrays 4

Figure 2: Internal Connection Pattern for a Two-Dimensional Array 4

CMU/SEI-2011-SR-011 | iv

CMU/SEI-2011-SR-011 | v

Abstract

This report provides an overview of changes and improvements to the Architecture Analysis &
Design Language (AADL) standard for describing both the software architecture and the execu-
tion platform architectures of performance-critical, embedded, real-time systems. The standard
was initially defined in the document SAE AS-5506 and published in 2004 by SAE International
(formerly the Society of Automotive Engineers). The revised language, known as AADL V2, was
published in 2009. Feedback from users of the standard guided the plan for improvements. Their
experience and suggestions resulted in the addition of component categories to better represent
protocols as logical entities (virtual bus), scheduler hierarchies and logical time partitions (virtual
processor), and a generic component (abstract). Revisions also led to the abilities to (1) explicitly
parameterize component declarations to better express architecture patterns, (2) specify multiple
instances of the same component in one declaration (component array) and corresponding connec-
tion patterns, (3) set visibility rules for packages and property sets that access other packages and
property sets, (4) specify system-level mode transitions more precisely, and (5) use additional
property capabilities including property value records. This project was funded by the U.S. Army
Aviation and Missile Research Development and Engineering Center Software Engineering Di-
rectorate (AMRDEC SED).

CMU/SEI-2011-SR-011 | vi

CMU/SEI-2011-SR-011 | 1

1 Overview

The Architecture Analysis & Design Language (AADL) standard was originally published by
SAE International1 as document AS-5506 in November 2004 [SAE 2004]. The initial standard
was augmented by the publication of a set of annexes containing the AADL Meta model and
XML Metadata Interchange (XMI) format, graphical AADL symbols, programming language
interface, and the Error Model Annex [SAE 2006]. SAE International incorporated corrections
and improvements, based on industrial experience with the standard, into AADL V2 in January
2009 [SAE 2009]. In January 2011, SAE International published a second set of annexes consist-
ing of the Behavior Annex, Data Modeling Annex, and ARINC653 Annex [SAE 2011].

This report describes changes in AADL V2 as follows:

• Section 2: Component improvements, including four additional component categories, ex-
plicit parameters for incomplete class declaration, arrays of components, explicit subprogram
instances and subprogram access, more flexible classifier matching and substitution, and
support for layered architectures

• Section 3: Feature and connection improvements, such as more flexible connections between
data and event data ports, a richer set of timing specifications for thread input and output,
and expansion of port groups to support grouping of all features

• Section 4: Mode-related improvements, such as enhancement of mode transitions

• Section 5: Packages and visibility of classifiers, including improvements in the visibility of
component implementations

• Section 6: Property improvements, including the availability of properties in sublanguage
annexes, records as property values, and additional predeclared properties

• Section 7: Other improvements in namespaces and flows, including eliminating the anony-
mous namespace

• Section 8: Changes in AADL standard appendices and annexes

This report also plots the translation of models from AADL V1 to V2 (Section 9).2 A brief con-
clusion (Section 10) ends the report. Throughout the report, we provide pointers to the locations
of improvements in the V2 document.

Additional resources regarding the SAE AADL standard are available at http://www.aadl.info and
the public AADL Wiki [AADL Wiki 2011]. This project was funded by the U.S. Army Aviation
and Missile Research Development and Engineering Center Software Engineering Directorate
(AMRDEC SED).

1 SAE International was formerly known as the Society of Automotive Engineers (SAE).

2 Throughout this report, we will refer collectively to the AADL standard version published in November 2004 and
its annexes published in 2006 as V1 or AADL V1. When we refer to V2 or AADL V2, we mean the version of the
standard published in January 2009 along with the revised and new annex documents based on AADL V2 that
were published in January 2011 and those in review.

CMU/SEI-2011-SR-011 | 2

2 Component Improvements

2.1 New Component Categories

Abstract component category (AADL V2 Section 4.6):3 Abstract components can represent
component models. Later, users can refine the abstract component category into one of the con-
crete component categories: software (thread, process, etc.), hardware (processor, bus, memory,
and device), and system. Abstract components allow conceptual architecture modeling and later
refinement into a runtime architecture. They also allow users to specify architecture patterns that
can instantiate different component categories.

Virtual processor component category (AADL V2 Section 6.2): A virtual processor represents
a logical resource that schedules and executes threads. Virtual processors model hierarchical
schedulers and recursive time partitioning of a physical processor resource. They also represent
operating-system threads or processes to which logical threads, active objects, or threads with the
same period (e.g., rate group optimization) are bound. Users can declare virtual processors as sub-
components of processors or virtual processors, reflecting the fact that a processor is divided into
logical resources. Alternatively, users can declare virtual processors separately from processors or
other virtual processors and then bind them to processors or virtual processors.

Virtual bus component category (AADL V2 Section 6.5): A virtual bus component represents a
logical bus abstraction such as a virtual channel or communication protocol. Users can declare
virtual buses as subcomponents of virtual buses, processors, and buses, or they can declare these
components separately and then bind them to virtual buses, processors, and buses. Virtual buses
within a processor support connections between components on the same processor. Virtual buses
on buses support connections between components across processors. Connections and virtual
buses can require other virtual buses through the Allowed_Connection_Binding_Class
and Allowed_Connection_Binding property. This allows users to model a protocol hierar-
chy. Processors and buses can specify that users provide protocols in the form of virtual buses
through the Provided_Virtual_Bus_Class property. Users can specify desired character-
istics for the quality of service (QoS) provided by the virtual bus, such as secure or guaranteed
delivery through the Required_Connection_Quality_Of_Service property, and
match them with QoS characteristics specified by the Provided_Connection_Quali-
ty_Of_Service property.

Subprogram group component category (AADL V2 Section 5.3): Subprogram groups represent
subprogram libraries. Users can instantiate subprogram groups (i.e., declare them as subcompo-
nents). Users can declare requires and provides subprogram group access and correspond-
ing access connections. Subprogram calls can reference subprograms in subprogram libraries.

3 Our references in parentheses to particular sections in AADL V2 correspond to document AS5506A, published

by SAE International [SAE 2009]. See http://www.sae.org/technical/standards/AS5506A for more information.

CMU/SEI-2011-SR-011 | 3

2.2 Parameterized Component Classifiers

Prototypes (AADL V2 Section 4.7) can specify classifiers as parameters for component type,
component implementation, and feature-group type declarations. These classifiers with prototypes
represent reference architectures, partially specified elements of a family of systems, and compo-
nent templates such as a redundancy pattern for dual-redundant systems. Users can reference pro-
totypes in place of classifiers in feature declarations, in subcomponent declarations, and as proto-
type bindings. This allows parameterization, via prototype, to extend down the system hierarchy.

A Prototype_Substitution_Rule property specifies matching rules for the classifiers
that users can supply as prototype actuals. By default this rule matches classifiers, but other rules
include type extension and signature match. Classifier match means that the classifiers must be
identical, or the actual classifier may be an implementation of the component type specified as
part of the prototype declaration. Type extension means that the actual classifier can be an exten-
sion of the classifier specified in the prototype declaration. Signature match means that for a com-
ponent type the set of declared features of the actual classifier must contain at least the features
specified in the classifier of the prototype declaration.

2.3 Classifier Substitution in Refinements

In AADL V1, users completed classifier references for subcomponent and feature declarations in
refined to statements of component type and implementation extensions. In other words,
users added a component type or, if they had already specified a component type, they added a
component implementation.

In AADL V2, refined to for subcomponents (AADL V2 Section 4.5) and features (AADL
V2 Section 8) also supports substituting classifiers with extensions of those classifiers. For exam-
ple, users can substitute a component type with another component type that they declare directly
or indirectly by an extends of the original component type. A Classifier_Refine-
ment_Rule property indicates whether the classifier allows completion or substitution. The de-
fault is classifier matching.

2.4 Component Arrays and Connection Patterns

Users can declare subcomponents to be arrays (AADL V2 Section 4.5). These arrays can be single
or multidimensional. Users can declare arrays at any level of the component hierarchy; arrays at
several levels of the hierarchy effectively are cumulative from the perspective of connection pat-
terns.

Connection patterns (AADL V2 Section 9.2.3) are applied to the source and destination compo-
nent arrays of semantic connections. The pattern specifies how the semantic connection will repli-
cate between the different elements of the source array and those of the destination array.

Users specify connection patterns through a Connection_Pattern property that they associ-
ate with the connection declaration. Its values determine, for each dimension of the array, how a
source element in an array connects to a destination element. Figure 1 shows the resulting connec-
tions for single-dimensional source (S) and destination (D) arrays of three elements. The prede-
fined patterns are one-to-one (identity), next, cyclic next, previous, cyclic previous, and all-to-all.

CMU/SEI-2011-SR-011 | 4

Users can combine patterns by listing multiple pattern values in the Connection_Pattern
property.

Figure 1: Connection Patterns for One-Dimensional Arrays

Note that the source and destination can be the same array, in which case the pattern specifies the
connectivity within an array (e.g., a sensor array). Figure 2 shows examples of connection pat-
terns for a two-dimensional array.

Figure 2: Internal Connection Pattern for a Two-Dimensional Array

If the predeclared pattern primitives and their combinations are not sufficient to express a desired
connection topology, then through a Connection_Set property users can specify the topology
of connections between the elements of both arrays as lists of array index pairs. Users may gener-
ate those values from a tool or by interpreting an algorithmic specification of the topology.

CMU/SEI-2011-SR-011 | 5

2.5 Improvements to Subprograms

In AADL V1, users could not declare subprogram subcomponents to model instances of code.
This is now possible in AADL V2 (Section 5.2). It is optional—AADL V2 allows users to model
systems with subprogram instances, but does not require it.

Also in AADL V2, we support explicit declaration of required and provided access to subpro-
grams as well as subprogram access connections from calls to the subprogram instance. This sup-
ports component-based modeling, in which users document all interface requirements in the inter-
face. As in AADL V1, users can declare calls and identify the subprogram that a binding property
will call. The requires subprogram access feature replaces the server subpro-
gram feature of AADL V1.

Subprogram calls can now also refer to subprogram instances (subcomponents directly or by ref-
erencing provides and requires subprogram access) as well as provided subprogram access
in subprogram groups. In addition, calls now refer to provided subprogram access in processors.

Users must name their call sequences. Subprogram call identifiers have to be unique within the
scope of the component implementation.

2.6 Improvements to Threads

Threads have two additional dispatch protocols (AADL V2 Section 5.4.2):

• timed, which is an aperiodic thread that executes when an event or event data arrives or exe-
cutes an alternative entry point when a timeout occurs

• hybrid, which combines periodic with aperiodic threads (i.e., a thread that responds to both
clock-based dispatches and event-based or event-data-based dispatches)

Threads have additional predeclared properties, such as Priority. Additional service calls are
available for thread-related processing, such as raising errors and retrieving error codes.

2.7 Thread-Related Runtime Services

Thread-related service calls are available to the application source code and to the runtime system
generator. Improvements to the API specification of these service calls include an explicit param-
eter specification (AADL V2 Section 5.4.8).

2.8 Asynchronous Systems

In a globally synchronous system, users express all time-related semantics in terms of a single
reference timeline (i.e., a single global clock). AADL V1 defines the timing semantics for thread
execution, communication, and mode switching in terms of a globally synchronous system.

In a globally asynchronous system like AADL V2, there are multiple reference times (AADL V2
Section 5.4.7). They represent different synchronization domains. Any time-related coordination
and communication among threads, processors, and devices across different synchronization do-
mains must take into account differences in the reference time of each of those synchronization
domains.

CMU/SEI-2011-SR-011 | 6

Users can assign different reference times to processors, devices, buses, and memory through the
Reference_Time property. The reference time for thread execution is determined by the refer-
ence time of the processor on which the thread executes. The reference time of communication
among threads, devices, and processors is determined by the reference times of the source, desti-
nation, and, if it is time driven, any execution-platform component involved in the communica-
tion. An application may go to a time server to retrieve time for time-stamping data. Users express
this by associating a reference time directly to the application component or by explicitly model-
ing the time server as part of the application.

2.9 Layered Architecture Modeling

AADL V2 contains a new section to address modeling of layered architectures (AADL V2 Sec-
tion 14). It summarizes three options for modeling layered architectures:

1. hierarchical containment of components

2. layered use of threads for processing and services

3. layered virtual-machine abstraction of the execution platform

In the latter case, system implementations represent the realizations of these abstractions and as-
sociate them with the component type or implementation declaration of processors, virtual proces-
sors, buses, virtual buses, memory, or devices. We added an Implemented_As property to
specify the association of a system-implementation classifier with execution-platform classifiers.
For example, a user might model the realization of a device such as a digital camera as a system
implementation that consists of software, processors, memory, and charge-coupled sensor devices
and that has the same interface as the declaration of the device type for the digital camera.

CMU/SEI-2011-SR-011 | 7

3 Feature and Connection Improvements

3.1 Abstract Features

AADL V2 introduces abstract features (AADL V2 Section 8.1) that represent placeholders for
concrete features (i.e., ports, parameters, and the different kinds of access features). Users typical-
ly employ abstract features in incomplete component-type declarations, especially those that play
the role of a template. Component-type extensions can refine abstract features into a concrete fea-
ture. Another method uses feature prototypes (AADL V2 Section 4.7) to specify the concrete fea-
ture. These feature prototypes can be passed down the containment hierarchy.

Users can connect abstract features with feature connections (AADL V2 Section 9.1). Feature
connections can also connect abstract features to concrete features.

3.2 No More Refines Type

In AADL V1, users could specify an implementation-specific property value for features by de-
claring feature refinements in the refines type subclause of a component implementation.
AADL V1 restricted these feature refinements to the addition of property associations with fea-
tures.

Users can express the same feature refinements through property associations contained in the
properties subclause of the component implementation and identify the feature in the ap-
plies to clause of the property association. Therefore, we have removed the refines type
subclause from AADL V2. The following example demonstrates:

process myproc

features

Port1: out data port signal;
end myproc;

process implementation myproc.impl1

properties

Data_Model::Integer_Range=> 0 ..200 applies to Port1;
end myproc.impl1;

In this example we assume that the user defined the property Integer_Range in a property set
called Data_Model. We standardized the declaration of such data-modeling properties in a Data
Modeling Annex document for AADL (see Section 8.1).

3.3 Feature Groups

We revised the port group concept of AADL V1 to allow users to group any features and
changed the keyword to feature group (AADL V2 Section 8.2). Unlike port groups in AADL
V1, feature groups in AADL V2 can be declared with a direction. If users specify an in or out
direction as part of a feature-group declaration, then all features inside the feature group must sat-
isfy this direction.

CMU/SEI-2011-SR-011 | 8

3.4 Inverse of Feature Groups

In AADL V1, users have to declare a port-group type and the inverse of the port-group type sepa-
rately. Port groups that will connect to each other could then be declared with one or the other
port-group type such that features declared inside would have complementing directions. This
capability is still supported in AADL V2.

AADL V2 also supports declaration of a feature group that indicates it is the inverse of the
feature-group type it references. This means the user does not have to explicitly declare feature-
group types that are the inverse of a feature-group type (AADL V2 Section 8.2).

3.5 Port-Queue Revisions

AADL V1 limits port queues to in-event and in-event data ports of threads and devices. In AADL
V2, users will continue to declare port-queue characteristics through properties in AADL V2. But
now users can associate port queues with ports of enclosing components (thread groups, process-
es, and systems). This allows users to specify a port queue with a thread group or process that is
serviced by multiple threads.

AADL V2 also allows users to associate port queues with out ports (AADL V2 Section 8.3.3).

3.6 Classifier Matching for Connections

AADL V1 requires users to make the types of the connection source and connection destination
identical. AADL V2 allows the modeler to specify more flexible matching rules: classifier match
(the default and the same semantics as AADL V1), equivalence (matching independently defined
types), subset (the destination is considered to be a subset of the source type, e.g., to capture the
specifications of the Object Management Group [OMG] Data-Distribution Service), and conver-
sion (an underlying protocol maps the source type into the destination type). The Classifi-
er_Matching_Rule property specifies which matching rule applies (AADL V2 Section 9.2).

3.7 Feature Arrays and Connection Patterns

AADL V2 introduces component arrays as shorthand for declaring a collection of subcomponents.
Users might need to connect this collection of components to a component that acts as a voter or
an arbitrator of their output. They can make this connection by declaring the incoming feature as a
feature array. AADL V2 limits this feature array to a single dimension, which users can declare
for any type of feature.

When users connect a component array to a component with a feature array (e.g., an array of
components with an out data port to a component with an array of data ports), a one-to-one pat-
tern will connect the output port of each component to a separate port of the receiving component.

3.8 Port Connections

AADL V2 (Section 9.2) now allows connections from data ports to event data ports and vice ver-
sa; between data or event data ports and data components, either directly or via data-access fea-
tures; or from event data ports to event ports.

CMU/SEI-2011-SR-011 | 9

Connections between data ports of periodic threads now can be one of three kinds: immediate
(mid-frame), delayed (phase delayed), and sampled (potentially nondeterministic sampling).
Sampling is not available between periodic data ports in AADL V1; one has to use event data
ports with a queue size of 1 to get that effect.

AADL V1 used the symbol –> for immediate connections and the symbol –>> for delayed con-
nections. AADL V2 uses the Timing property instead of different connection symbols. There-
fore, port connections can use only the symbol –>. Timing is an enumeration property that ap-
plies to port connections. It can be assigned the value sampled, immediate, or delayed.
The default value is sampled.

Users can also now specify the port connection between an application component and a proces-
sor port.

3.9 Improved Communication Timing Specification

We added properties to allow explicit input- and output-time specification for ports (AADL V2
Section 8.3.2). This addition overrides the default timing semantics of input at dispatch time and
output at completion for data ports. It allows specification of multiple input times and output
times as well. If the input time is not the dispatch time, then it is in terms of execution time.

Users can also specify input- and output-time properties for data-access connections. In that case,
they specify the time ranges in which read access and write access occur to the shared data.

Rate properties allow users to specify input and output rates for individual ports. These rates may
be different from the thread execution rate (period).

3.10 Port-Related Runtime Services

Port-related service calls are available to the application source code, including calls explicitly to
initiate sending and receiving data through ports and the processing of port queues (AADL V2
Section 8.3.5).

3.11 Bidirectional Connections

AADL V2 allows bidirectional connections. The symbol –> represents unidirectional connec-
tions, and the symbol <–> represents bidirectional connections. Users can declare feature con-
nections, port connections, access connections, and feature-group connections as bidirectional.
Parameter connections must be unidirectional.

CMU/SEI-2011-SR-011 | 10

4 Mode-Related Improvements

4.1 Mode-Transition Improvements

Mode transitions are now named (AADL V2 Section 12). By naming them, we can reference
mode transitions in property reference values. Also, we can associate properties with them
through contained property associations. Further, we can specify mode-transition-specific connec-
tions. In AADL V1, we specified those connections by listing the source and destination modes of
the transition.

In AADL V1, mode-transition declarations refer to event ports to identify the events that trigger
the transition. These event ports can be incoming in the component type (i.e., external events that
trigger mode transition) or outgoing for subcomponents. In AADL V2, users can also refer to
events whose source is the component itself (self.eventname).

In addition, AADL V2 allows the arrival event of events, data, and event data to trigger mode
transitions (i.e., in addition to event ports, users can name data ports and event data ports as trig-
gers in mode transitions). This enhancement is consistent with the ability in AADL V2 to connect
a data port with an event data port (see Section 3.8).

4.2 Modes in Component Types

Mode declarations in the component type now document that a component has modal behavior
(AADL V2 Section 4.3). These modes apply to all implementations. When users declare modes in
a component type, they cannot add mode declarations to component implementations.

Mode declarations in the type also indicate whether modes are externally observable. The effects
of mode on a component’s behavior may be reflected in mode-specific property values through
the in modes statement of property associations. In other words, property associations in the
properties subclause can have different values for different modes.

An external component can control mode switching by sending an event to the component. De-
claring mode transition in the component type documents those mode transitions that are triggered
externally through event ports. Or, declaration in a component implementation can identify that a
mode transition is triggered by an event from a subcomponent or from the component itself. Fur-
ther, naming the port in the mode-transition documents that an event from an event port affects a
specific mode transition.

4.3 Requires Modes

In AADL V2, components can inherit modes from the containing component. Users will specify
the inherited modes for a component type through a requires modes declaration (AADL V2
Section 12). The in modes clause of a subcomponent declaration specifies the mapping from
the actual modes of the parent component to the inherited modes of the child component.

CMU/SEI-2011-SR-011 | 11

4.4 System-Level Mode Transitions

We improved the specification of a transition between two system-operation modes (AADL V2
Section 13.6). AADL V2 now supports specifying

• emergency transitions (i.e., transitions that must occur immediately)

• planned transitions (i.e., transitions that allow the application to reach the end of the hyper
period of a critical set of periodic threads before performing the transition)

This specification also defines more precisely the execution and communication behavior during
the actual mode transition of application threads that

1. continue to execute in the old and new modes

2. get deactivated

3. get activated

4. are zombie threads (i.e., their execution has not completed yet at the time of the transition)

CMU/SEI-2011-SR-011 | 12

5 Packages and Visibility of Classifiers

5.1 With and Renames

The with clause specifies the set of packages that are acceptable qualifiers when users have
specified classifiers (AADL V2 Section 4.2). In that situation, it limits the set of packages that
users can name to those listed in the with clause (e.g., when declaring subcomponents). With
clauses are declared for package sections and specify which property sets users can draw on for
property types, property definitions, and property constants.

The renames clause defines a local (short) identifier as an alias for package names and qualified
component-type references. This alias

• can be used only within the scope of the package in which it is declared

• must be unique within the namespace in which it is declared

• can be used instead of the qualified classifier references

5.2 Visibility of Component Implementations

In AADL V2, users can declare a component implementation in both the public and private parts
of a package. The public part of a package reveals the identity of a component implementation,
allowing users to name it in a subcomponent, while the private part of a package hides the details
of the implementation. When this occurs, the component implementation in the public part con-
tains only property associations and, if appropriate, mode declarations (AADL V2 Section 4.2).

In the following example, we declared the system implementations Gps.Dual and
Gps.Secure in both the public and private parts of the package Visibility_Example.
Notice that declarations in the public part do not contain any subcomponents or connections; they
contain only modes.

package Visibility_Example

--Assume that the classifiers Position_Type, Gps_Sender.Basic,

--Gps_Sender.Secure, and GPS_Health_Monitor have been defined in this

--package.
public

 system Gps

 features

 Position: out data port Position_Type;

 Init_Done: in event port;

 end Gps;

 system implementation Gps.Dual

 modes

 Initialize: initial mode;

 Dualmode: mode;

 Mainmode: mode;

 Backupmode: mode;

 end Gps.Dual;

CMU/SEI-2011-SR-011 | 13

 system implementation Gps.Secure extends Gps.Dual

 modes

 Securemode: mode;

 SingleSecuremode: mode;

 end Gps.Secure;

private

 system implementation Gps.Dual

 subcomponents

 Main_Gps: process Gps_Sender.Basic in modes (Dualmode, Mainmode);

 Backup_Gps: process Gps_Sender.Basic in modes (Dualmode,

Backupmode);
 Monitor: process GPS_Health_Monitor;

 connections

 port Main_Gps.Position -> Position in modes (Dualmode, Mainmode);

 port Backup_Gps.Position -> Position in modes (Backupmode);

 port Backup_Gps.Position -> Main_Gps.SecondaryPosition in modes

(Dualmode);
 modes

 Started: Initialize –[Init_Done]-> Dualmode;

 Dualmode –[Monitor.Backup_Stopped]-> Mainmode;

 Dualmode –[Monitor.Main_Stopped]-> Backupmode;

 Mainmode –[Monitor.All_Ok]-> Dualmode;

 Backupmode –[Monitor.All_Ok]-> Dualmode;
 end Gps.Dual;

 system implementation Gps.Secure extends Gps.Dual

 subcomponents

 Secure_Gps: process Gps_Sender.Secure in modes (Securemode);

 connections

 port Secure_Gps.Position -> Position in modes (Securemode);

 modes

 Dualmode –[Monitor.Run_Secure]-> Securemode;

 Securemode –[Monitor.Run_Normal]-> Dualmode;

 Securemode –[Monitor.Backup_Stopped]-> SingleSecuremode;

 SingleSecuremode –[Monitor.Run_Normal]-> Mainmode;

 Securemode –[Monitor.Main_Stopped]-> Backupmode;
 end Gps.Secure;

end Visibility_Example;

CMU/SEI-2011-SR-011 | 14

6 Property Improvements

6.1 Specifying Applicability of Properties

In AADL V1, a property definition specifies, through keywords in the applies to clause, the
component categories, features, flows, and connections that properties could belong to. AADL V1
does not allow all named elements in an AADL model to have properties.

In AADL V2, however, the user can name classes in the AADL Meta model to indicate the ap-
plicability of properties. All named elements of a model can have properties. This enhancement
provides finer control and makes the property mechanism accessible to sublanguage annexes. For
example, a user can specify that a property applies to a system type (type), system im-
plementation (implementation), system subcomponent, system classifier (type
or implementation), or system (all of the above). One effect of this is that any named model
element can now have properties.

AADL V2 also allows the user to define properties that apply to entities in an annex subclause. In
other words, the property mechanism of the AADL core language is now available in annexes.
For example, the Error Model Annex can define the Occurrence property in a property set and
restrict its applicability to error events. Users specify applicability to entities in an annex sub-
clause by naming classes in the annex Meta model (AADL V2 Section 11.1.2).

6.2 Revisions to Contained Property Associations

Contained property associations (AADL V2 Section 11.3) now

• allow a property value to be associated with multiple model elements (users can identify
multiple model elements in the applies to clause).

• can be applied to elements of a component array by specifying the array index or a subrange.

• can be declared in component types, in component implementations, and with subcompo-
nents. This allows users to associate properties with features and flow specifications that
they declared in a component type or in a component type that is being extended.

6.3 Property Type Improvements

AADL V2 now supports record structures for properties (AADL V2 Section 11.1.1): Users can
define property types as records with multiple fields as property values. The values can be speci-
fied as list of values identified by field names.

Users should consider the set of enumeration literals in the definition of an enumeration type as an
ordered list.

6.4 Property Values

Property-value expressions (AADL V2 Section 11.4) now include computed values by specifying
a user-supplied function to calculate the value: compute(<function>).

CMU/SEI-2011-SR-011 | 15

Users can declare references as property values that refer to any named element (or the core mod-
el or annex clauses) in an AADL model. For example, properties can refer to error events declared
in the error-model annex.

6.5 References to Properties

In AADL V1, users can specify the value of a property to be that of another property with the ex-
pression value(propertyname).

In AADL V2, it is not necessary to use value() for that purpose. For properties that users do not
predeclare, they will qualify the property name by the property set name. Only predeclared
property names could introduce ambiguity with enumeration and units literals because they
do not require qualification by property set name. For properties that do take enumera-
tion or units literals as values, AADL V2 interprets an identifier (following one of those
keywords) as a literal. If users define an enumeration or units literal with the same identifi-
er as a predeclared property and want to refer to the property instead of the literal, they can quali-
fy the property with the property set name to indicate that the property is referenced
(AADL V2 Section 11.4).

6.6 No More Access Keyword for Properties

Properties associated with access features no longer require the keyword access. AADL V2 can
limit the applicability of properties to access features if users specify the following in the ap-
plies to clause of a property definition:

• data access (provides or requires data access)

• access (data access, bus access, subprogram access, or subprogram group access)

6.7 Other Property Improvements

AADL V2 contains several additional property improvements:

• Instead of Requires_Access and Provides_Access properties, AADL V2 has an
Access_Right property. It can be used on data components and ports.

• In AADL V2, users can specify thread entry points by naming a

− subprogram in the source code

− subprogram classifier

− subprogram call sequence

• In AADL V2, users can reference all named elements of AADL models, including elements
in annexes.

• We organized the predeclared properties into multiple property sets: deployment, thread,
timing, communication, memory, programming, and modeling.

• Property sets have a with clause that specifies the set of property sets that are acceptable

qualifiers when referencing a property type, a property definition, or a property constant. The
use of with statements is unnecessary when referencing a predeclared property set.

CMU/SEI-2011-SR-011 | 16

7 Other Improvements

7.1 No More Anonymous Namespace

The anonymous namespace in AADL V1 effectively provides a local workspace by allowing us-
ers to declare classifiers outside a package. AADL V1 considered the provision of workspaces the
responsibility of the tool environment; in AADL V2, we eliminated the anonymous namespace.
As a result, users must place all component types, component implementations, and feature-group
types in packages.

7.2 Flows Through Shared Data Components

In AADL V1, users can specify flows for ports. AADL V2 extends flow specifications to accom-
modate flows through shared data components as well. The flow to and from shared data compo-
nents (via data access) is determined by the Access_Right property and follows write and read
access (AADL V2 Section 10.1).

7.3 End-to-End Flows

Users can specify an end-to-end flow as a composition of other end-to-end flows, where the last
element of the predecessor end-to-end flow connects with the first element of the successor end-
to-end flow (AADL V2 Section 10.3).

CMU/SEI-2011-SR-011 | 17

8 AADL Standard Appendices and Annexes

The SAE AADL standard suite includes a number of standardized appendices and annexes. A
collection of these for AADL V1 was published in 2006 [SAE 2006].

The SAE AADL Committee is in the process of revising and adding annexes, with three of them
published in 2011 [SAE 2011]. In this section, we point to the updated and new versions of these
annexes by their document letters.

8.1 Data Modeling Annex Standard

The Data Modeling Annex standard includes a standard set of properties and a collection of pre-
declared basic data component types (AADL V2 Annex Document B) [SAE 2011].

8.2 Behavior Annex Standard

The Behavior Annex Standard allows modelers to annotate component types and implementations
with behavior specifications (AADL V2 Annex Document D) [SAE 2011].

8.3 ARINC653 Annex Standard

The ARINC653 Annex standard provides guidance and sets properties that support modeling of
partitioned architectures according to the ARINC653 standard [SAE 2011].

8.4 AADL Meta Model & XML Interchange Format Standard

The revised AADL Meta model & XML interchange-format standard provides a standard way of
manipulating and interchanging AADL models. The OMG MARTE UML4 profile for AADL is
also based on the AADL Meta model (AADL V2 Appendix Document E).

8.5 Code Generation Annex Standard

We are developing a Code Generation Annex standard that provides guidance and a standardized
set of properties to support automatic generation and integration of runtime systems and applica-
tion components (AADL V2 Annex Document A).

8.6 Error Model Annex Standard

We are revising the Error Model Annex to support AADL V2, with publication expected in late
2011. It allows modelers to annotate component types and implementations with fault-behavior
specifications, including probabilistic fault occurrence and propagation (AADL V2 Annex Docu-
ment C). The original Error Model Annex standard was published in June 2006 [SAE 2006].

4 MARTE stands for Modeling and Analysis of Real-Time and Embedded systems; UML is the Unified Modeling

Language.

CMU/SEI-2011-SR-011 | 18

8.7 UML Profile for AADL via OMG MARTE

OMG MARTE has defined a UML profile for modeling embedded systems. The OMG MARTE
document includes specifications for the AADL subset of MARTE as a standardized UML profile
for AADL. The SAE AADL Committee will also approve this profile (AADL V2 Appendix Doc-
ument F).

8.8 Future Annexes

We are considering several new annexes, which we have proposed to the SAE AADL Committee.
They include a Requirements Definition & Analysis Annex, a Constraint Annex, and annexes for
specialized architectures such as synchronous system architectures and time-triggered architec-
tures.

CMU/SEI-2011-SR-011 | 19

9 Translation from AADL V1 to AADL V2

This section summarizes language constructs in AADL V1 that are affected by changes in AADL
V2 and thus require translation when migrating AADL models from V1 to V2.

9.1 AADL Specifications and Anonymous Namespaces

In AADL V2, users must place all classifier declarations in packages. Thus, any component type,
component implementation, port-group type, and annex-library declaration that users did not
place in a package in AADL V1 must now be placed in a package.

Translation Action

Use the name of the file that contains such declarations as the name of the package. Since
these items can be referenced only within that package, there is no need for additional
corrections.

AADL_specification ::=

{ AADL_global_declaration | AADL_declaration }+

9.2 Package Declarations and Properties

In AADL V1, both the public and private sections of a package could have a properties section. In
AADL V2, there is a single properties section after the public and private sections.

Translation Action

Move the property associations into the single properties section:
package_spec ::=

package defining_package_name

(public package_declaration [private package_declaration]

| private package_declaration)

[properties ({ property_association }+ | none_statement)]

end defining_package_name ;

package_declaration ::= { aadl_declaration }+

[properties ({ property_association }+ none_statement)]

9.3 Package Declarations and With Clauses

In AADL V2, with clauses restrict the packages that users can reference by a given package.

Translation Action

Insert a with clause for those packages that are actually referenced.

CMU/SEI-2011-SR-011 | 20

9.4 Refines Type in Component Implementations

In AADL V1, component implementations have a refines type section that allows users to
declare property associations with implementation-specific values for features in the type.

Translation Action

Convert those property associations into contained property associations naming the fea-
ture, and place them in the properties section of the component implementation.

9.5 Naming Subprogram Call Sequences

In AADL V1, call-sequence naming is optional, while AADL V2 requires it.

Translation Action

Add a generated name as the call-sequence identifier.

9.6 Named Mode Transitions

In AADL V1, the in modes clause refers to a mode transition by naming the source and destina-
tion modes because mode transitions do not have names.

In AADL V2, mode transitions can optionally have names, and users express a reference to a
mode transition by referring to its name.

Translation Action

Replace the reference by source and destination mode with the name, and attach an iden-
tifier to those mode-transition declarations.

9.7 Changes for Features

Translation Action

Translate the following reserved words for feature declarations in AADL V1 into re-
served words in AADL V2.

V1 Port group Server subprogram

V2 Feature group Provides subprogram access

9.8 Changes for Connections

Translation Action

Translate the following reserved words for connection declarations in AADL V1 into re-
served words in AADL V2.

V1 Data port Event port Event data port Port group

V2 Port Port Port Feature group

Also, for data-port connections, we no longer use the connection symbol to distinguish between
immediate and delayed connections. This information is now stored in a property on the connec-
tion.

CMU/SEI-2011-SR-011 | 21

Translation Action

If the connection symbol is −>, add the property “Timing => immediate;” to the connec-
tion. If the connection symbol is −>>, change the symbol to −> and add the property

“Timing => delayed;” to the connection.

9.9 Property Sets and With Clauses

In AADL V2, a with clause restricts references to properties in property sets other than the pre-
declared properties to those listed in the with clause. AADL V1 has no such restriction.

Translation Action

Insert a with clause naming all property sets that are actually referenced.

9.10 Property Definition Changes

In AADL V1, acceptable references for the reference type and acceptable property owners (ap-
plies to) have special syntaxes using reserved words.

In AADL V2, these become identifiers in the AADL Meta model.

Translate V1 Into V2

For referable element categories

Connections Connection

Server subprogram Subprogram access

For property owner categories

Port group Feature group, feature group type

Server subprogram Subprogram access

Port group connections Feature group connection

Event port connections Port connection

Data port connections Port connection

Event data port connections Port connection

Port connections Port connection

Access connections Access connection

Parameter connections Parameter connection

CMU/SEI-2011-SR-011 | 22

9.11 Changes in Property Expressions

AADL V1 requires an access reserved word for some properties. AADL V2 does not require
this reserved word.

Translation Action

Remove this reserved word in property definitions and property associations.

In AADL V1, the value of another property used as the property value requires a value (<prop-
ertyname>). In AADL V2, value is not required.

Translation Action

Remove value(<propertyname>);

In AADL V1, a classifier term (i.e., naming of a classifier) requires the specification of the com-
ponent category (e.g., foo => system (gps);). In AADL V2, a classifier term uses classifier
instead of the category (i.e., foo => classifier(gps);)

Translation Action

Replace the category name with classifier.

In AADL V1, a classifier term and a reference term do not require parentheses around the value.
In AADL V2, we use classifier(<classifier name>); for classifier terms and refer-
ence(<model element path>); for reference terms.

Translation Action

Add parentheses for classifier and reference terms.

9.12 Renaming of Properties

In AADL V1, we have a number of entry-point properties; they end in Entrypoint. In AADL
V2, these properties end in Entrypoint_Source_Text.

In AADL V1, we have Required_Access and Provided_Access as properties. In AADL
V2, we replaced them with Access_Right.

AADL V1 has no predeclared property called Priority. Instead, we defined this property in
the property set called “SEI.” In AADL V2, this property is part of the predeclared set of proper-
ties. Thus, the property-set name can be left off.

CMU/SEI-2011-SR-011 | 23

10 Conclusion

The changes that we incorporated into AADL V2 allow the standard to better meet the needs of
safety-critical, embedded, real-time system engineering. The language has become more expres-
sive because we added virtual bus, virtual processor, and abstract components as component cate-
gories; component declarations now have explicit parameterization to better support templates and
architecture patterns; V2 now supports component and feature arrays; package visibility is explic-
itly declared through with clauses; and properties can have record-structured values. We have
also added a number of predeclared properties.

There is a simple mapping of existing AADL models into AADL V2, whose conversion is sup-
ported by an export capability in the OSATE toolset, Version 1.5.8.

CMU/SEI-2011-SR-011 | 24

References

URLs are valid as of the publication date of this document.

[AADL Wiki 2011]
AADL Public Wiki with recent news, publications on use of AADL by various projects, and
tools. https://wiki.sei.cmu.edu/aadl (April 2011).

[SAE 2004]
Society of Automotive Engineers. SAE Standards: AS5506, Architecture Analysis and Design
Language (AADL). http://www.sae.org/technical/standards/AS5506 (November 2004).

[SAE 2006]
SAE International. SAE Standards: AS5506/1, Architecture Analysis and Design Language
(AADL) Annex Volume 1. http://www.sae.org/technical/standards/AS5506/1 (June 2006).

[SAE 2009]
SAE International. SAE Standards: AS5506A, Architecture Analysis and Design Language
(AADL). http://www.sae.org/technical/standards/AS5506A (January 2009).

[SAE 2011]
SAE International. SAE Standards: AS5506/2, Architecture Analysis and Design Language
(AADL) Annex Volume 1. http://www.sae.org/technical/standards/AS5506/2 (January 2011).

CMU/SEI-2011-SR-011 | 25

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

March 2012

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

What’s New in V2 of the Architecture Analysis & Design Language Standard?

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Peter H. Feiler, Joseph R. Seibel, and Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2011-SR-011

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report provides an overview of changes and improvements to the Architecture Analysis & Design Language (AADL) standard for
describing both the software architecture and the execution platform architectures of performance-critical, embedded, real-time systems.
The standard was initially defined in the document SAE AS-5506 and published in November 2004 by SAE International (formerly the
Society of Automotive Engineers). SAE International published the revised language, known as AADL V2, in January 2009. Feedback
from users of the standard guided the plan for improvements. Their experience and suggestions resulted in the addition of component
categories to better represent protocols as logical entities (virtual bus), scheduler hierarchies and logical time partitions (virtual proces-
sor), and a generic component (abstract). The revisions also led to the abilities to (1) explicitly parameterize component declarations to
better express architecture patterns, (2) specify multiple instances of the same component in one declaration (component array) and cor-
responding connection patterns, (3) set visibility rules for packages and property sets that access other packages and property sets, (4)
specify system-level mode transitions more precisely, and (5) use additional property capabilities including property value records.

14. SUBJECT TERMS

AADL, embedded systems, architectural modeling, real-time systems

15. NUMBER OF PAGES

34

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Overview
	2 Component Improvements
	3 Feature and Connection Improvements
	4 Mode-Related Improvements
	5 Packages and Visibility of Classifiers
	6 Property Improvements
	7 Other Improvements
	8 AADL Standard Appendices and Annexes
	9 Translation from AADL V1 to AADL V2
	10 Conclusion
	References

